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Introduction

I QCD is non-perturbative at low-energies
I Nuclear physics tools:

I Models
I not based directly on QCD
I uncontrolled systematics

I Effective field theories (EFTs)
I incorporate symmetries of QCD
I controlled systematics (in practice, poor convergence)
I require potentially large number of parameters to be determined

I Lattice QCD
I first-principles QCD calculations
I controlled systematics

I Nucleon-nucleon scattering from the lattice
I can understand hadronic interactions directly from QCD
I gives important input for EFTs
I explore experimentally inaccessible setups, such as different quark masses

Constructing partial waves in a box

I Lattice calculations performed in a finite volume - generally, a periodic
box

I Reduced symmetry of the box
mixes different angular momenta

I Good quantum numbers are
those of the cubic group

Figure: Infinite volume P- and F -waves (left) look the same
when projected onto cubic irreps (right).

I One method for creating operators with good quantum numbers:
I begin with two nucleons displaced by some distance x0 (alternately, with some

relative momentum, k ), combined into desired total spin S
I Use spherical harmonics to project onto desired orbital angular momentum L
I Use Clebsch-Gordan coefficients to project onto desired total J
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where CG represents the Clebsch-Gordan coefficient and R is a rotation matrix
belonging to the cubic group, Oh.

I Use subduction matrices to project a given J onto desired cubic irrep

Luscher’s method for extracting scattering phase shifts

I Energies of two-particle systems in a periodic box are quantized
I Finite volume spectrum can be related to scattering phase shift
I For low-energy s-wave scattering:
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1
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qL
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)2
)

where q is obtained from the energy, E = 2
√

q2 + M2
N, L is the length

of the box, and S is related to the Riemann zeta function.
I For higher partial waves:

I partial wave mixing (both physical mixing and mixing due to the cubic symmetry)
leads to a matrix eigenvalue equation

I for low energies, mixing from higher partial waves may be neglected, and the
quantization condition reduces to (for l ≤ 4)
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where δΛ and α` are given in the Table below, and the c`m`
are kinematic functions
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Isospin Spin Parity Λ δΛ α4,Λ α6,Λ

Triplet Singlet Positive A+
1 δ 1S0

0 0
T+

2 δ 1D2
−4/7 0

Singlet Singlet Negative T−1 δ 1P1
0 0

A−2 δ 1F3
−12/11 80/11

√
13

Singlet Triplet Positive T+
1 δ 3S1

0 0
A+

2 δ 3D3
-4/7 0

Triplet Triplet Negative

A−1 δ 3P0
0 0

T−1 δ 3P1
0 0

T−2 δ 3P2
0 0

E− δ 3P2
2/7 0

Spectrum from the lattice

I Calculations performed at mπ ∼ 800 MeV and lattice spacing a ∼ 0.15
fm

I Cubic operators used as sources and sinks for two-nucleon systems
and form correlation functions
I position space operators at the source
I at the sink, project onto relative momentum shells corresponding to

non-interacting states in a box
I Lattice calculation performed in Euclidean space

I large Euclidean time limit gives lowest energy state that couples to operator,
C(t) ∼ e−E0t

I good overlap of operators with a given momentum shell gives us access to
excited states at intermediate times
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Figure: Effective mass plots (data points) and fits (bands) to the energy shift values, ∆E = ENN − 2mN for NN-systems in the T−2
(left) and T+

2 cubic irreps. Solid lines represent non-interacting energy levels. Red: L = 24, Black: L = 32.

Phase Shifts

Here we show plots of the scattering phase shifts in a particular angular momentum
channel as a function of the scattering momentum, q. Fits to an effective range
expansion at a given order in q2 are shown as colored bands.

I S-wave
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I D-wave
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I P-wave
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I F-wave
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Conclusions

I Lattice QCD gives reliable tool for first-principles QCD calculations in
non-perturbative regimes

I Extracted finite volume energy levels for two-nucleon systems at
mπ ∼ 800 MeV

I Calculated scattering phase shifts for two nucleon systems scattering
in S, P, D, and F partial wave channels
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